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Influence of Disorder on the Interface Sharpness 
of an Ising Ferromagnetic System 
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We study the thermodynamic behavior of a two-component random 
ferromagnetic Ising system in the presence of given boundary conditions. The 
system consists of two species A and B occupying the sites of a Bethe lattice 
which terminates on a surface layer where the spins are kept fixed. We study the 
interface of the system when the spins on half of the surface of the lattice are 
fixed opposite to the spins on the other half. More specifically, we study the 
influence of disorder on the interface width. We find that disorder clearly 
increases the interface width at temperatures well below To, indicating that the 
interface roughening of disordered Ising systems in 3D real lattices should occur 
at temperatures significantly below those of the corresponding ordered ones. 
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1. I N T R O D U C T I O N  

The the rmodynamic  behavior  of a ferromagnetic system under  bounda ry  
condi t ions  that  cause the appearance of two distinct magnetic  phases 
meeting at an interface has been studied for several years. (~-7) 

The interface behavior  has been studied for ordered Ising systems in 
2D (square), (1 3) 3D (cubic), (4"5) and Bethe ~7) lattices. The main  conclusion 

is that  in the d =  2 case (d is the d imens ion)  the interface remains diffuse at 
all temperatures  T below the critical To, ~1-3) while in the d =  3 case it 
becomes sharp at low temperatures  0~<T~<Tn ,  (4 6) where TR is the 
roughening  temperature.  In  the disordered system case there is some 
relatively recent work, (8) s tudying certain interest ing aspects of the interface 
behavior.  
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In the present paper we study the influence of disorder on the interface 
width of a specific magnetic binary alloy system. 

Our system is an Ising ferromagnet on a Bethe lattice and disorder is 
introduced by assuming two types of species A and B randomly distributed 
on the lattice sites. In a recent paper ~7) the ordered case has been studied 
by developing a method similar to Eggarter's (9) and here we further extend 
our method to include disorder. 

The starting point for this extension is a system whose bulk behavior 
is studied in a recent paper31~ In this system, if we allow species A and B 
to interchange positions in a way that a certain pair correlation is main- 
tained at a given temperature, we can obtain the exact bulk values of its 
thermodynamic potentials on the Bethe lattice, and, as shown in ref. 10, 
these values coincide with the ones obtained by Eggarter's treatment of the 
corresponding frozen-species (quenched) case. The extension of the inter- 
face case is along the lines presented in ref. 7 and the obtained behavior is 
exact. Proper choice of the parameters defining the ensemble of disordered 
systems under study can maintain constant the local species concentration 
and pair correlation and this is a case of a partially annealed system that 
should resemble closely the quenched one. 

Thus, in Section 2 we present the formalism and in Section 3 we 
present and discuss our results and their relevance to the interface behavior 
of random Ising systems in 3D real lattices. 

2. F O R M A L I S M  

We consider an Ising spin system on a Bethe lattice, with spin carrying 
atoms of two kinds, called species A and B, randomly distributed on the 
lattice sites. 

The Hamiltonian of the system is given by 

H= - ~ {J(X,, Xj) a~j+ U(X,, Xj)} (2.1) 
(0 )  

where a~= +1 indicates the two possible spin directions on site i, 
J(Xi, Xj)> 0 are the ferromagnetic coupling constants for the neighboring 
X;, Xj species (X= A or B), and U(Xi, Xj) are neighboring species inter- 
actions, with U(A, A) > 0, U(B, B) > 0 and U(A, B) < 0. 

Our Bethe lattice consists of a Cayley tree, of coordination number z, 
branching out of a central lattice site 0 in N homocentric layers of sites. 
The lattice terminates in an external surface layer labeled N. Moving 
inward, we label N -  1, N -  2 ..... 1, the successive layers of the lattice, up to 
the layer 1 adjacent to the central site 0 (see ref. 7, Fig. 1). Each layer n 
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contains N, = z(z-1)  "-1 lattice sites, and consequently the lattice as a 
whole contains a total of 

Z I)N+ 1 
Ntot = 1 + z--~- 2 (z-- -- 1 

sites. 
As in the one-species case, (7) we consider here z even ( z = 4  for sim- 

plicity) and assume the following phase separating boundary conditions: 
The spin directions on all sites on one half of the surface layer N are fixed 
"up" (aN= +1) and those on the other half are fixed "down" (aN= --1), 
giving rise to magnetic phases 1 and 2, respectively. The species are fixed A 
throughout the whole surface layer. 

We introduce the layer-dependent spin-species pair probabilities 
Pn(Xn, an;X,_~,a,_l) referring to neighboring sites on two adjacent 
layers (n, n -  1 ), and the corresponding spin-species single-site probabilities 
P.(X., ~.). 

In a preceding paper, (1~ as mentioned in the Introduction, we have 
shown that the system considered behaves like one with four states per site, 
where state 1 = (A, T), state 2 = (A, J.), state 3 ~- (B, 1"), and state 4 ---- (B, ~L). 
Then the pair and single probabilities introduced above take the simpler 
form P.(k., k._ 1), P.(k.) ,  where k. =-(X., an), and obey the relations 

4 4 

Z ~ P.(t,k)= 1 (2.2a) 
t = l  k = l  

4 4 

P.+,(t,k)=Pn(k)= ~ P.(k, t) (2.2b) 
t = l  t = l  

The basic thermodynamic relations used originally by Eggarter ~9) can 
be extended as follows: 

P(k,, k~+,,,, kn+,, 2 ..... k,+l,z 1, k"-l"Z)=expYfl k'o, kl kz)} 
P(k'~, k.+l. 1, k. + 1,2,..., k.+l.z_~, k . -  1,z) 

(2.3) 

where (n + 1, 1), (n + 1, 2),..., (n + 1, z -  1) are the z - 1 nearest neighbors 
of site n situated on layer n +  l, ( n - 1 ,  z) is its zth nearest neighbor 
situated on layer n -  1, and the {k} (k = 1, 2, 3, 4) are the states considered 
on those sites. This relation is exact in thermodynamic equilibrium due to 
the Cayley tree topology (ref. 7, Fig. 1). 
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The imposed boundary conditions imply statistical homogeneity inside 
each magnetic phase (i.e., on each half of any layer n) and then relations 
(2.3) can be written in terms of single and pair probabilities: 

(U.(k) P~+,(1, 1)) -'-1 P~(1, t) 
P ~  P~+,(1,k-) e~(k, t) =eBa&'' (2.4) 

where we consider a transition from state 1 to state k (k = 2, 3, 4) on a site 
on layer n, while the state 1 is realized on its z - 1 neighbors on layer n + 1 
and the state t (t = 1, 2, 3, 4) on its zth neighbors on layer n -  1. The AEg,, 
are given in Table I, and i is a phase index. Omitting from now on the 
phase index for simplicity, we proceed to derive the equations determining 
the P(k, t) in each phase. 

For given k we divide by parts two of the relations (2.4), one with 
t = 1 and the other with t = t, and we obtain nine relations of the form 

P,(k, t) 
P,(1, t) = x , (k  ) exp{fl(zIEk.1 -- AEk,,) } (2.5) 

where k = 2, 3, 4; t = 2, 3, 4; 3Ek. t are given in Table I, and we define 

x,(k) =- P,(k, 1 )/P,(1, 1 ) (2.6) 

Using (2.2b), (2.5), and (2.6) in relations (2.4) for t =  l, we obtain 
three relations of the form 

I1 ' exp{fl(dEt., AEt,~)} lz- '  q-~" t=zXn+l( t )  -- -=xn(k)  e x p f l Z t E k ~  (2 .7 )  
1 4 + Z ,  : 2 x,  + 1(0 

with k = 2 ,  3,4 and 3Ek,1 from Table I, which hold for every site other 
than the central. 

Relations (2.7) constitute a system of three recurrence relations for the 
x,(k), k = 2, 3, 4. The system has fixed points {x~o(k)} obtained by putting 

Table I. Excitation Energies/tE~ of Relations (2.4) 

t k = 2  k = 3  k = 4  

1 e 8p(JAA) 

2 e 4#JA~" 

3 e 2 # ( 3 J a A  + ~'Aa) 

4 e2f l (3JAA--  JAB) 

e4fl(JaA -- JAB) + 4fl(UAA -- UAa) 

e2fl(JAA--JAB)~-4fl(UAA UAB) 

e# (3JAA JBB-- 2JAB + 3UAA-- UBB-- 2UAB) 

ef l (3JAA + JRB -- 4JAB + 3 UAA -- UBB -- 2UAs)  

e4fl(JAA + JAB ) + 4fl( UAA -- [JAB ) 

e2#(JAA + JAB) + 4#(UAA -- UAa) 

e f l ( 3 J a a  + JBB + 4JAB + 3UAa -- UBB -- 2UAB) 

efl(3daA - JBa + 2JAB + 3UAA -- UBB -- 2UAB) 
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xn+l (k )=x . (k  ) ( k = 2 , 3 , 4 )  and the iteration of (2.7) converges to 
attracting {x~(k)} among those fixed points, depending on the initial 
values {x~v(k)}, i.e., the boundary conditions. 

As discussed above, proper boundary conditions on the surface of the 
system give rise to magnetic phases {i} ( i=  1, 2) and the previous analysis 

i shows that the values {x~(k)} are characteristic of the magnetic phase i 
and remain such as we approach the central site (interface region) from 
within the phase i, a behavior similar to the one in ref. 7. 

In the presence of the assumed boundary conditions above, around 
the central site 0, for symmetry reasons, we have 

P~(X, ~; Y, a') = P~(X, - ~ ;  Y, - a ' ) ,  X, Y= a or B (2.8) 

Three more equations similar to (2.7) hold there (when z = 4) 

Po(k) (PI(1,  1)~ z (p2(1, 1)'~2 = eBbEd, , 
(2.9) 

P0(1) \ ~  k-)J \P~(1,  k-) 

with k = 2, 3, 4 and AEk.1 from Table I, which can be written in terms of 
P(k, t) referring to one of the two phases by using (2.2b) and (2.8). We 
now have enough equations to determine the 16 P~(t, k) ( i=  1 or 2) around 
the central site. 

These are the nine relations (2.5), the three relations (2.6) for 
i _ _  i x~(k) - x~(k),  k = 2, 3, 4 [-x~(k) obtained by proper iteration of 2.73, the 

three relations (2.9), and the normalization condition (2.2a). Having 
obtained the P~(t, k), we proceed to calculate in successive steps the 
Pi~(t, k), n = 2, 3,... ~ N ,  by observing that relations (2.2b) provide three 
independent equations relating the pi(t, k) on adjacent layers that replace 
the (2.9) used for the P~(t, k), the remaining t3 equations holding for every 
layer n far away from the surface. 

The calculation of layer-dependent quantities like magnetization m~, 

i i i = P.(BT)] - 1, i =  1, 2 (2.10) m. 2 [ P . ( A T ) +  

and concentration CA,., 

_ _  i Ca..-p.(A~()+p~(a+), i = 1 , 2  (2.11) 

is then straightforward by using (2.2b). Under the given boundary con- 
' + m ] = 0 a n d  1 _ 2 ditions they obey m. CA,.- CA, n. 

Moving away from the interface region, we obtain the bulk behavior 
of the system that obtains in those layers {n} for which 1 ~ n .~ N. There 
p i ( k , t ) =  P~(k,i t) and m.i--mooi ( i=  1, 2), CA, n=CA, c~ , where (az)denotes  
the corresponding bulk value. 
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Those bulk values coincide with the ones obtained by Eggarter's bulk 
method (9) when the values of concentration Ca,~ and species correlation 

PA/B.~ = (1 - -  CA, oo) -1  2 P~o(Aa, Be') 
ff,~r' 

obtained above are used in his formalism. (9) 

3. RESULTS A N D  DISCUSSION 

As discussed in the Introduction, the formalism developed in Section 2 
treats exactly the interface behavior of a magnetic binary alloy with given 
species concentration and pair correlation on a Bethe lattice, i.e., the close 
equivalent to the frozen-species one. 

The thermodynamic behavior obtained through our formalism is thus 
an approximation (a "Bethe-Peierls type" one according to Eggarter (9)) to 
the frozen-species case, since only species concentration and pair 
correlation are really frozen in it. Our formalism therefore constitutes the 
Eggarter-equivalent approximation for the interface behavior of a frozen- 
species system and our results have a similar validity, which has so far been 
successfully tested in the bulk cases. (9'11 13) 

Applying the above formalism to our system, one can get the local 
magnetization and species concentration profile in the interface region. The 
magnetization profile we get is similar to the one-species case, (7) being 
sharp throughout the whole temperature range 0 to To. Figure 1 shows the 
magnetization and concentration profile. 

The concentration profile is symmetric around the central site and 
with proper choice of parameters can become constant throughout the 
whole bulk and interface region of the system. 

One such choice is to take Jag = JBB and Ca = 0.5. In such a case there 
remain three independent parameters, namely JAA, JAn, and the species 
correlation P A/B. 

The variance of J can serve as a measure of the disorder of such a 
binary system in analogy with the case of binary electronic disorder. (14) The 
variance is expressed in terms of the independent parameters as 

( (J-- ( J) )2) = 4P A/B(1-- PAm) (JAA 2JAB) 2 (3.1) 

In what follows we study the behavior of a system in which we vary PA/B 
while keeping Jan =JBB = 10JAB fixed. In this case the disorder changes 
proportionally to the parameter a = 4PAre(1- PAre) according to (3.1). 

Following the one-species case, (7) we study the influence of the dis- 
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Magnetization (m,) and concentration (CA) behavior on successive layers n = 1, 2, 3 .... 
away from the central site 0 for the case cA =0.4, T=0.9Tc. 

order a on the magnetic interface by introducing a parameter W, indicating 
the degree of interface sharpness, as W=(moo-ml)/ml,  where mn 
(n = 1,..., oo) is the local magnetization at a site n layers away from the cen- 
tral site 0, where mo is zero for symmetry reasons. Note that in this 
definition W =  0 means the perfectly sharp interface and W = oo means the 
diffuse interface. The study of W with varying temperature is presented in 
Fig. 2 for three cases of a ( a =  1, full disorder; a=0 .5 ,  intermediate 
disorder; and a = 0, ordered case, where the W vs. TIT C curve coincides 
with the one-species case). 

Our results show a clear increase of interface width with respect to the 
ordered ( a = 0 )  case over the whole temperature range and especially 
around T R = 0.5Tc, ~5) where the interface width W(a) increases beyond the 
W(a = 0) value in a way roughly proportional to the disorder parameter tr. 
Such behavior indicates a significant influence of the disorder on the inter- 
face of our system. Disorder should have a similar influence on the inter- 
face of 3D real lattices as well, since in the ordered case there exists a 
qualitative similarity in the behavior of the interface between these lattices 

822/54/3-4-13 
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Fig. 2. Interface sharpness  pa ramete r  W vs. T / T  c for three cases of the disorder  pa ramete r  a: 
(a) cr = 1 (solid line), (b) cr = 0.75 (dash-dot ted  line), and  (c) ~r = 0 (dot ted line). 

and the Bethe lattice, as can be shown through the following line of 
argument: Although our system depicts a sharp interface throughout the 
whole temperature range 0 to Tc due to the Bethe lattice topology, our 
system passes from almost perfect interface sharpness (W~ 0; see Fig. 2, 
a = 0  case) for temperatures up to T/Tc~-0.3, through an intermediate 
range onto a relatively fast-increasing interface width beyond T/Tc ~-0.7. 
We understand this behavior as the Bethe lattice analogy to 3D real 
lattices, reported as having an interface roughening transition (s) at 
TR/Tc = 0.5 as discussed above. 

In view of this analogy, our results for W (Fig. 2) clearly indicate that 
the disorder should push the reported (s) roughening transition TR in 3D 
real lattices to significantly lower values, depending on the degree of dis- 
order in the system. This qualitative conclusion about TR is complementary 
to the results of ref. 8 concerning the influence of weak impurities on the 
domain wall roughness. 

We believe that further study of the interface behavior throughout the 
whole parameter space of our system would not enhance the qualitative 
understanding of the role of disorder in real systems beyond the con- 
clusions presented above, although these conclusions all but exhaust the 
subject. 
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